11/11/2024, 13:28 21901153421.html

Calibration Certificate

RDG SUPPLY SDN BHD

No.13-2, Kuchai Entrepreneur Park, Jalan Kuchai Maju 2

58200 Kuala Lumpur, MALAYSIA

Tel: +60 3 7980 7788

e-mail: ricky.douglas@rdg.com.my

http: www.rdg.com.my

Manufacturer: Vivax-Metrotech Model: vLoc3-Pro

Serial No.: 21901153421 **Asset No.:**

Work Order: RDG_240066-JL GLOBAL INV Report No.:

Customer: JL GLOBAL INVISION SB

We certify that the instrument meets or exceeds the manufacturer published electrical specifications at the points tested. All measurements are traceable to national or international standards or have been derived by approved ratio techniques. This certificate may not be reproduced other than in full.

Calibration Information

Calibration Date: 11-NOV-2024 13:10:42 Status: Passed

			Top Coils	S				
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se
1024	152.0	High	0.52200568	ok	0.52197069	ok	0.62175167	ok
1024	132.0	Low	0.01208154	ok	0.01209049	ok	0.01446505	ok
4096	38.9	High	0.51786500	ok	0.51667434	ok	0.59011406	ok
4090	30.9	Low	0.01205968	ok	0.01204465	ok	0.01382810	ok
8150	20.9	High	0.50929743	ok	0.50721395	ok	0.54127127	ok
0130	20.9	Low	0.01208874	ok	0.01205669	ok	0.01295689	ok
10000	18.1	High	0.51786524	ok	0.51555151	ok	0.53407854	ok
10000	10.1	Low	0.01244731	ok	0.01241214	ok	0.01289895	ok
10001	66.8	High	0.48273998	ok	0.47716579	ok	0.60853773	ok
10001	00.0	Low	0.01161080	ok	0.01148722	ok	0.01470512	ok
32788	26.4	High	0.48087019	ok	0.47250047	ok	0.59912097	ok
32700	20.4	Low	0.01519438	ok	0.01496770	ok	0.01899914	ok
65500	19.9	High	0.48453695	ok	0.47582799	ok	0.60206968	ok
03300	19.9	Low	0.02363502	ok	0.02329413	ok	0.02933822	ok
83000	18.9	High	0.49567938	ok	0.48798677	ok	0.59706646	ok
03000	10.9	Low	0.02930636	ok	0.02896530	ok	0.03526076	ok
131000	18.1	High	0.49869242	ok	0.49318272	ok	0.47513872	ok
131000	10.1	Low	0.04440041	ok	0.04409702	ok	0.04217102	ok
199980	21.2	High	0.44584572	ok	0.43158904	ok	0.30771562	ok
199900	21.2	Low	0.05958954	ok	0.05795686	ok	0.04081869	ok
			Bottom Co	oils				
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se
		High	0.50965559	ok	0.51935691	ok	0.62119877	ok
1024	152.0							

Bottom Coils										
Frequency	Current(mA)	Gain	H response	V response	90 response					
1024	152.0	High	0.50965559 ok	0.51935691 ok	0.62119877 ok					
1024	132.0	Low	0.01180824 ok	0.01200401 ok	0.01444633 ok					
4096	38.9	High	0.50563937 ok	0.51494569 ok	0.58820421 ok					
4090	30.9	Low	0.01179004 ok	0.01197995 ok	0.01379070 ok					
8150	20.9	High	0.49822086 ok	0.50648171 ok	0.53705657 ok					
0130	20.9	Low	0.01184880 ok	0.01201947 ok	0.01286637 ok					
10000	18.1	High	0.50723344 ok	0.51523638 ok	0.52892566 ok					
10000	10.1	Low	0.01222076 ok	0.01238739 ok	0.01284940 ok					
10001	66.8	High	0.46410877 ok	0.47462326 ok	0.60743111 ok					

11/11/2024, 13:28 21901153421.html

Low

		Low	0.01118612	ok	0.01141460	ok	0.01471093	ok
32788	26.4	High	0.45880824	ok	0.46887660	ok	0.58812630	ok
32700	20.4	Low	0.01462828	ok	0.01490160	ok	0.01897840	ok
65500	19.9	High	0.46069252	ok	0.47105539	ok	0.57994807	ok
03300	19.9	Low	0.02280233	ok	0.02322439	ok	0.02921805	ok
92000	18.9	High	0.47204563	ok	0.48258671	ok	0.57468063	ok
83000	10.9	Low	0.02835062	ok	0.02886782	ok	0.03520826	ok
131000	18.1	High	0.48060206	ok	0.48944622	ok	0.45501083	ok
131000	10.1	Low	0.04352513	ok	0.04414733	ok	0.04208270	ok
199980	21.2	High	0.43683454	ok	0.43763351	ok	0.29760918	ok
199900	21.2	Low	0.05943407	ok	0.05928346	ok	0.04106620	ok
			Alignment N	latrix				
Po	sition	Coil	X respons	e	Y respons	e	Z respons	se
		X	0.9999814		0.0020919		-0.003684	
	Тор	Y	0.0022354	1	0.9999846		-0.0025482	
	·	Z	0.0063362	29	0.0079058	34	0.9999566	31
		Х	0.9999104	7	-0.006266°	15	0.0055011	14
В	ottom	Y	0.0086717	'2	0.9999315	57	-0.00340057	
	Bottom		-0.00636953		0.00407582		0.99995089	
		B	/T Antenna E	Ralanc	•			
Frequency	Current(mA)	Gain	H ratio		V ratio		90 ratio	
		High	0.9763411	ok	0.9949925	ok	0.9991107	ok
1024	152.0	Low	0.9773787	ok	0.9928473	ok	0.9987058	ok
		High	0.9763922	ok	0.9966543	ok	0.9967636	ok
4096	38.9	Low	0.9776412	ok	0.9946283	ok	0.9972954	ok
0.1-0		High	0.9782513	ok	0.9985563	ok	0.9922133	ok
8150	20.9	Low	0.9801518	ok	0.9969129	ok	0.9930138	ok
		High	0.9794699	ok	0.9993888	ok	0.9903518	ok
10000	18.1	Low	0.9817993	ok	0.9980060	ok	0.9961586	ok
10001	00.0	High	0.9614053	ok	0.9946716	ok	0.9981815	ok
10001	66.8	Low	0.9634237	ok	0.9936782	ok	1.0003951	ok
00700	00.4	High	0.9541208	ok	0.9923304	ok	0.9816487	ok
32788	26.4	Low	0.9627428	ok	0.9955838	ok	0.9989084	ok
05500	40.0	High	0.9507892	ok	0.9899699	ok	0.9632574	ok
65500	19.9	Low	0.9647688	ok	0.9970061	ok	0.9959040	ok
00000		High	0.9523205	ok	0.9889340	ok	0.9625070	ok
83000	40.0							
	18.9	Low	0.9673880	ok	0.9966346	ok	0.9985111	ok
101000		Low	0.9673880 0.9637244	ok ok	0.9966346 0.9924237	ok ok	0.9985111 0.9576379	ok ok
131000	18.9							
131000 199980		Low High	0.9637244	ok	0.9924237	ok	0.9576379	ok

0.9973910 ok 1.0228894 ok

1.0060636 ok

10/09/2024, 11:56 21901162190.html

Calibration Certificate

RDG SUPPLY SDN BHD

No.13-2, Kuchai Entrepreneur Park, Jalan Kuchai Maju 2

58200 Kuala Lumpur, MALAYSIA

Tel: +60 3 7980 7788

e-mail: ricky.douglas@rdg.com.my

http: www.rdg.com.my

Manufacturer: Vivax-Metrotech Model: vLoc3-Pro

Serial No.: 21901162190 **Asset No.:**

Work Order: RDG_240050-JL GLOBAL INV Report No.:

Customer: JL GLOBAL INVISION SB.

We certify that the instrument meets or exceeds the manufacturer published electrical specifications at the points tested. All measurements are traceable to national or international standards or have been derived by approved ratio techniques. This certificate may not be reproduced other than in full.

Calibration Information

Calibration Date: 10-SEP-2024 11:38:08 Status: Passed

			Top Coil	S				
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se
1024	152.0	High	0.49848235	ok	0.51014411	ok	0.62403595	ok
1024	152.0	Low	0.01154075	ok	0.01181757	ok	0.01447670	ok
4096	38.9	High	0.49528861	ok	0.50496364	ok	0.60003728	ok
4090	36.9	Low	0.01154003	ok	0.01177787	ok	0.01400573	ok
8150	20.9	High	0.48890731	ok	0.49594504	ok	0.55559963	ok
0130	20.9	Low	0.01162021	ok	0.01180953	ok	0.01321279	ok
10000	18.1	High	0.49817917	ok	0.50420177	ok	0.54862648	ok
10000	10.1	Low	0.01199623	ok	0.01217041	ok	0.01321387	ok
10001	66.8	High	0.45255780	ok	0.45953599	ok	0.61146891	ok
10001	00.8	Low	0.01090479	ok	0.01109503	ok	0.01473629	ok
32788	26.4	High	0.44638076	ok	0.44810614	ok	0.60669547	ok
32766	20.4	Low	0.01424642	ok	0.01441446	ok	0.01916757	ok
65500	19.9	High	0.44853091	ok	0.44720271	ok	0.60738868	ok
03300	19.9	Low	0.02223811	ok	0.02246055	ok	0.02960145	ok
83000	18.9	High	0.45758554	ok	0.45559388	ok	0.60262328	ok
03000	10.9	Low	0.02754026	ok	0.02780063	ok	0.03558628	ok
131000	18.1	High	0.46903351	ok	0.46405748	ok	0.49209508	ok
131000	10.1	Low	0.04258804	ok	0.04277172	ok	0.04375339	ok
199980	21.2	High	0.43594530	ok	0.42083934	ok	0.33021399	ok
199900	21.2	Low	0.05951982	ok	0.05834417	ok	0.04387811	ok
			Bottom Co	oils				
Frequency	Current(mA)	Gain	H respons	e	V respons	е	90 respons	se
		High	0.50321484	ok	0.50138044	ok	0.62557465	ok
1024	152.0	Low	0.01165532	ok	0.01165525	ok	0.01458973	ok
4000	20.0	High	0.49952769	ok	0.49713588	ok	0.60082299	ok
4096	38.9	Low	0.01163958	ok	0.01163322	ok	0.01411376	ok
9150	20.0	High	0.49289384	ok	0.48901638	ok	0.55565441	ok
8150	20.9							

0.01170113

0.50226206

0.01207096

0.45823833

ok

ok

ok

Low

High

Low

High

18.1

0.01167663

0.49749595

0.01203747

0.45366120

ok

ok

ok

0.01331812

0.54848236

0.01332642

0.61115849

ok

ok

ok

10000

10/09/2024, 11:56 21901162190.html

		Low	0.01102066	ok	0.01098179	ok	0.01480679	ok
22700	20.4	High	0.45635480	ok	0.44516432	ok	0.60328943	ok
32788	26.4	Low	0.01435705	ok	0.01429251	ok	0.01922328	ok
65500	19.9	High	0.46072453	ok	0.44531751	ok	0.60361528	ok
65500	19.9	Low	0.02230723	ok	0.02224134	ok	0.02974825	ok
92000	18.9	High	0.46964473	ok	0.45338327	ok	0.59932482	ok
83000	10.9	Low	0.02754137	ok	0.02749384	ok	0.03586109	ok
131000	18.1	High	0.47985771	ok	0.46171319	ok	0.48893750	ok
131000	10.1	Low	0.04235013	ok	0.04225561	ok	0.04405577	ok
199980	21.2	High	0.45384100	ok	0.42647979	ok	0.32555264	ok
199900	21.2	Low	0.06016825	ok	0.05867947	ok	0.04374031	ok
			Alignment N	latrix				
Po	sition	Coil	X respons	е	Y respons	e	Z respons	se e
		Χ	1.0000287	3	0.0058161	6	-0.0043073	34
	Тор	Y	0.0040573	7	1.0000042	29	-0.0022338	84
		Z	-0.0011548	88	0.0087321	6	0.9999856	69
		X	0.9999374	2	-0.0057342	26	0.0074093	30
В	Bottom		0.0114208	1	0.99992484		-0.00182586	
		Z	0.0004499	9	0.00508052		0.99999368	
		В	/T Antenna B	alanc	e			
Frequency	Current(mA)	Gain	H ratio		V ratio		90 ratio	
		Gain High	H ratio 1.0094938	ok	V ratio 0.9828212	ok	90 ratio 1.0024657	ok
Frequency 1024	Current(mA) 152.0			ok ok		ok ok		
1024	152.0	High	1.0094938		0.9828212		1.0024657	ok
		High Low	1.0094938 1.0099274	ok	0.9828212 0.9862645	ok	1.0024657 1.0078077	ok ok
1024 4096	152.0 38.9	High Low High	1.0094938 1.0099274 1.0085588	ok ok ok ok	0.9828212 0.9862645 0.9844984	ok ok ok ok	1.0024657 1.0078077 1.0013094	ok ok ok ok
1024	152.0	High Low High Low High Low	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637	ok ok ok ok ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464	ok ok ok ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718	ok ok ok ok ok ok ok
1024 4096 8150	152.0 38.9 20.9	High Low High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956	ok ok ok ok ok ok ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001	ok ok ok ok ok ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373	ok ok ok ok ok ok
1024 4096	152.0 38.9	High Low High Low High Low High Low Low	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295	ok ok ok ok ok ok ok ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768	ok ok ok ok ok ok ok ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176	ok ok ok ok ok ok ok ok ok
1024 4096 8150 10000	152.0 38.9 20.9 18.1	High Low High Low High Low Low High Low High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295	ok ok ok ok ok ok ok ok ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158	ok ok ok ok ok ok ok ok ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923	ok
1024 4096 8150	152.0 38.9 20.9	High Low High Low High Low High Low High Low Low Hogh Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256	ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9897936	ok ok ok ok ok ok ok ok ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841	ok
1024 4096 8150 10000	152.0 38.9 20.9 18.1 66.8	High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442	ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9897936 0.9934350	ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859	ok
1024 4096 8150 10000 10001	152.0 38.9 20.9 18.1	High Low	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655	ok	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9897936 0.9934350 0.9915397	ok	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065	ok
1024 4096 8150 10000 10001 32788	152.0 38.9 20.9 18.1 66.8 26.4	High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.987236 0.9934350 0.9915397 0.9957845	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875	ok o
1024 4096 8150 10000 10001	152.0 38.9 20.9 18.1 66.8	High Low How High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857 1.0031082	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.987236 0.9934350 0.9915397 0.9957845 0.9902402	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875 1.0049592	ok o
1024 4096 8150 10000 10001 32788	152.0 38.9 20.9 18.1 66.8 26.4	High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857 1.0031082 1.0263540	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9897936 0.9934350 0.9915397 0.9957845 0.9902402 0.9951478	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875 1.0049592 0.9945265	ok o
1024 4096 8150 10000 10001 32788 65500	152.0 38.9 20.9 18.1 66.8 26.4 19.9	High Low	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857 1.0031082 1.0263540 1.0000403	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9897936 0.9934350 0.9915397 0.9957845 0.9902402 0.9951478 0.9889646	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875 1.0049592 0.9945265 1.0077224	ok o
1024 4096 8150 10000 10001 32788 65500	152.0 38.9 20.9 18.1 66.8 26.4 19.9	High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857 1.0031082 1.0263540 1.0000403 1.0230777	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9872158 0.9934350 0.9915397 0.9957845 0.9902402 0.9951478 0.9889646 0.9949483	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875 1.0049592 0.9945265 1.0077224 0.9935834	ok o
1024 4096 8150 10000 10001 32788 65500 83000	152.0 38.9 20.9 18.1 66.8 26.4 19.9 18.9	High Low	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857 1.0031082 1.0263540 1.0000403 1.0230777 0.9944137	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9897936 0.9934350 0.9915397 0.9957845 0.9902402 0.9951478 0.9889646 0.9949483 0.9879334	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875 1.0049592 0.9945265 1.0077224 0.9935834 1.0069110	ok o
1024 4096 8150 10000 10001 32788 65500 83000	152.0 38.9 20.9 18.1 66.8 26.4 19.9 18.9	High Low High	1.0094938 1.0099274 1.0085588 1.0086265 1.0081540 1.0069637 1.0081956 1.0062295 1.0125521 1.0106256 1.0223442 1.0077655 1.0271857 1.0031082 1.0263540 1.0000403 1.0230777	ok o	0.9828212 0.9862645 0.9844984 0.9877185 0.9860294 0.9887464 0.9867001 0.9890768 0.9872158 0.9872158 0.9934350 0.9915397 0.9957845 0.9902402 0.9951478 0.9889646 0.9949483	ok o	1.0024657 1.0078077 1.0013094 1.0077133 1.0000986 1.0079718 0.9997373 1.0085176 0.9994923 1.0047841 0.9943859 1.0029065 0.9937875 1.0049592 0.9945265 1.0077224 0.9935834	ok o

18/09/2024, 10:21 21901171838.html

Calibration Certificate

RDG SUPPLY SDN BHD

No.13-2, Kuchai Entrepreneur Park, Jalan Kuchai Maju 2

58200 Kuala Lumpur, MALAYSIA

Tel: +60 3 7980 7788

e-mail: ricky.douglas@rdg.com.my

http: www.rdg.com.my

Manufacturer: Vivax-Metrotech Model: vLoc3-Pro

Serial No.: 21901171838 **Asset No.:**

Work Order: RDG_240050-JL GLOBAL INV Report No.:

Customer: JL GLOBAL INVISION S.B

We certify that the instrument meets or exceeds the manufacturer published electrical specifications at the points tested. All measurements are traceable to national or international standards or have been derived by approved ratio techniques. This certificate may not be reproduced other than in full.

Calibration Information

Calibration Date: 18-SEP-2024 10:17:47 Status: Passed

			Top Coils	S				
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se
1024	152.0	High	0.50873160	ok	0.52331072	ok	0.63824153	ok
1024	132.0	Low	0.01181927	ok	0.01216845	ok	0.01482529	ok
4096	38.9	High	0.50500256	ok	0.51786315	ok	0.61841607	ok
4030	30.9	Low	0.01180276	ok	0.01211257	ok	0.01445098	ok
8150	20.9	High	0.49970877	ok	0.51064509	ok	0.57762903	ok
0100	20.0	Low	0.01189519	ok	0.01215977	ok	0.01375362	ok
10000	18.1	High	0.50713778	ok	0.51759475	ok	0.56906778	ok
10000	10.1	Low	0.01221902	ok	0.01247222	ok	0.01371815	ok
10001	66.8	High	0.46382654	ok	0.47652936	ok	0.62755501	ok
10001	00.0	Low	0.01118292	ok	0.01148161	ok	0.01511816	ok
32788	26.4	High	0.46444488	ok	0.47815847	ok	0.63060880	ok
32700	20.4	Low	0.01460471	ok	0.01492232	ok	0.01982317	ok
65500	19.9	High	0.47179368	ok	0.48844713	ok	0.63441908	ok
03300	19.9	Low	0.02277016	ok	0.02326623	ok	0.03062538	ok
83000	18.9	High	0.48148578	ok	0.49949661	ok	0.62906641	ok
03000	10.9	Low	0.02812790	ok	0.02875643	ok	0.03677326	ok
131000	18.1	High	0.49346343	ok	0.51108897	ok	0.51395845	ok
131000	10.1	Low	0.04334141	ok	0.04418788	ok	0.04516327	ok
199980	21.2	High	0.45885897	ok	0.46182171	ok	0.34424454	ok
199900	21.2	Low	0.06049095	ok	0.05991593	ok	0.04518722	ok
			Bottom Co	oils				
Frequency	Current(mA)	Gain	H respons		V respons	е	90 respons	se
	, ,	High	0.51465231	ok	0.51980805	ok	0.63227129	ok
1024	152.0	Low	0.01196594	ok	0.01210489	ok	0.01469917	ok
4000	00.0	High	0.51054168	ok	0.51507443	ok	0.61265278	ok
4096	38.9	Low	0.01194174	ok	0.01206727	ok	0.01432404	ok
0.450	00.0	High	0.50471771	ok	0.50804919	ok	0.57247525	ok
8150	20.9	Low	0.01202316	ok	0.01212406	ok	0.01363254	ok
10000	40.4	High	0.51202202	ok	0.51490146	ok	0.56416303	ok
10000	18.1	Low	0.01234530	ok	0.012/3015	ok	0.01350704	ok

0.01234530

0.46737278

ok

0.01243915

0.47382787

ok

ok

0.01359704

0.62287349

ok

Low

High

18/09/2024, 10:21 21901171838.html

		Low	0.01127762	ok	0.01145072	ok	0.01500842	ok
		High	0.46812564	ok	0.47380838	ok	0.63036078	ok
32788	26.4	Low	0.01472646	ok	0.01492075	ok	0.01974365	ok
05500	40.0	High	0.47692806	ok	0.48234624	ok	0.64419776	ok
65500	19.9	Low	0.02302124	ok	0.02330078	ok	0.03090155	ok
00000	40.0	High	0.48800337	ok	0.49293429	ok	0.64134324	ok
83000	18.9	Low	0.02851118	ok	0.02882125	ok	0.03723723	ok
131000	18.1	High	0.50096166	ok	0.50419503	ok	0.51193768	ok
131000	10.1	Low	0.04400679	ok	0.04433225	ok	0.04466663	ok
199980	21.2	High	0.45500311	ok	0.45373955	ok	0.32685962	ok
199900	21.2	Low	0.05997222	ok	0.05986392	ok	0.04251087	ok
			Alignment N	latrix				
Po	sition	Coil	X respons		Y respons	e	Z respons	e
		X	0.9999415		-0.0055684		-0.0050347	
	Тор	Y	0.0061246		0.9999557		-0.0013352	
	•	Z	0.0048732		0.0077038		0.9999653	
		Χ	0.9999477	'9	-0.0060215	59	-0.0022993	38
В	ottom	Y	0.0080763	8	0.9999513	86	0.00009806	
2000		Z	0.00157652		-0.00069660		0.99999630	
		В	/T Antenna E	Balanc	e			
Frequency	Current(mA)	Gain	H ratio		V ratio		90 ratio	
Frequency	Current(mA)	Gain High	H ratio 1.0116382	ok	V ratio 0.9933067	ok	90 ratio 0.9906458	ok
Frequency 1024	Current(mA) 152.0	Gain High Low	H ratio 1.0116382 1.0124094	ok ok	V ratio 0.9933067 0.9947767	ok ok	90 ratio 0.9906458 0.9914929	ok ok
1024	152.0	High Low	1.0116382		0.9933067		0.9906458	
		High	1.0116382 1.0124094	ok	0.9933067 0.9947767	ok	0.9906458 0.9914929	ok
1024 4096	152.0 38.9	High Low High	1.0116382 1.0124094 1.0109685	ok ok	0.9933067 0.9947767 0.9946149	ok ok	0.9906458 0.9914929 0.9906806	ok ok
1024	152.0	High Low High Low	1.0116382 1.0124094 1.0109685 1.0117752	ok ok ok	0.9933067 0.9947767 0.9946149 0.9962601	ok ok ok	0.9906458 0.9914929 0.9906806 0.9912158	ok ok ok
1024 4096 8150	152.0 38.9 20.9	High Low High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237	ok ok ok ok	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164	ok ok ok ok	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777	ok ok ok ok
1024 4096	152.0 38.9	High Low High Low High Low	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581	ok ok ok ok ok	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633	ok ok ok ok	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965	ok ok ok ok ok
1024 4096 8150 10000	152.0 38.9 20.9 18.1	High Low High Low High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310	ok ok ok ok ok ok ok	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965	ok ok ok ok ok ok ok	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811	ok ok ok ok ok ok
1024 4096 8150	152.0 38.9 20.9	High Low High Low High Low High Low High Low Low Low	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683	ok	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096	ok ok ok ok ok ok ok ok ok	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412	ok ok ok ok ok ok ok ok ok
1024 4096 8150 10000 10001	152.0 38.9 20.9 18.1 66.8	High Low High Low High Low High Low High Low High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456	ok	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309	ok	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412 0.9996067	ok ok ok ok ok ok ok ok ok
1024 4096 8150 10000	152.0 38.9 20.9 18.1	High Low High Low High Low High Low High Low High Low Low Low Hogh Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364	ok	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948	ok	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412 0.9996067 0.9959885	ok
1024 4096 8150 10000 10001 32788	152.0 38.9 20.9 18.1 66.8 26.4	High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948 0.9875096	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9925401 0.9925401 0.9959885 1.0154136	ok o
1024 4096 8150 10000 10001	152.0 38.9 20.9 18.1 66.8	High Low Low	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827 1.0110267	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948 0.9875096 1.0014850	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412 0.9996067 0.9959885 1.0154136 1.0090177	ok o
1024 4096 8150 10000 10001 32788	152.0 38.9 20.9 18.1 66.8 26.4 19.9	High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827 1.0110267 1.0135364	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948 0.9875096 1.0014850 0.9868621	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412 0.9996067 0.9959885 1.0154136 1.0090177 1.0195160	ok o
1024 4096 8150 10000 10001 32788 65500	152.0 38.9 20.9 18.1 66.8 26.4	High Low How High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827 1.0110267 1.0135364 1.0136263	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948 0.9875096 1.0014850 0.9868621 1.0022541	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412 0.9996067 0.9959885 1.0154136 1.0090177 1.0195160 1.0126170	ok o
1024 4096 8150 10000 10001 32788 65500	152.0 38.9 20.9 18.1 66.8 26.4 19.9	High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827 1.0110267 1.0135364 1.0136263 1.0151951	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948 0.9875096 1.0014850 0.9868621 1.0022541 0.9865113	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9925401 0.9925401 0.9959885 1.0154136 1.0090177 1.0195160 1.0126170 0.9960682	ok o
1024 4096 8150 10000 10001 32788 65500 83000	152.0 38.9 20.9 18.1 66.8 26.4 19.9 18.9	High Low	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827 1.0110267 1.0135364 1.0135364 1.0151951 1.0153521	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9973096 0.9909024 0.9998948 0.9875096 1.0014850 0.9868621 1.0022541 0.9865113 1.0032672	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9927412 0.9996067 0.9959885 1.0154136 1.0090177 1.0195160 1.0126170 0.9960682 0.9890035	ok o
1024 4096 8150 10000 10001 32788 65500 83000	152.0 38.9 20.9 18.1 66.8 26.4 19.9 18.9	High Low High	1.0116382 1.0124094 1.0109685 1.0117752 1.0100237 1.0107581 1.0096310 1.0103347 1.0076456 1.0084683 1.0079251 1.0083364 1.0108827 1.0110267 1.0135364 1.0136263 1.0151951	ok o	0.9933067 0.9947767 0.9946149 0.9962601 0.9949164 0.9970633 0.9947965 0.9973485 0.9943309 0.9973096 0.9909024 0.9998948 0.9875096 1.0014850 0.9868621 1.0022541 0.9865113	ok o	0.9906458 0.9914929 0.9906806 0.9912158 0.9910777 0.9911965 0.9913811 0.9911716 0.9925401 0.9925401 0.9925401 0.9959885 1.0154136 1.0090177 1.0195160 1.0126170 0.9960682	ok o

07/11/2024, 12:19 21901171837.html

Calibration Certificate

RDG SUPPLY SDN BHD

No.13-2, Kuchai Entrepreneur Park, Jalan Kuchai Maju 2

58200 Kuala Lumpur, MALAYSIA

Tel: +60 3 7980 7788

e-mail: ricky.douglas@rdg.com.my

http: www.rdg.com.my

Manufacturer: Vivax-Metrotech Model: vLoc3-Pro

Serial No.: 21901171837 **Asset No.:**

Work Order: RDG_240063-JL GLOBAL INV Report No.:

Customer: JL GLOBAL INVISION SB.

We certify that the instrument meets or exceeds the manufacturer published electrical specifications at the points tested. All measurements are traceable to national or international standards or have been derived by approved ratio techniques. This certificate may not be reproduced other than in full.

Calibration Information

Calibration Date: 07-NOV-2024 12:07:07 Status: Passed

Top Coils										
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se		
1024	152.0	High	0.51225978	ok	0.51442230	ok	0.63942254	ok		
1024	152.0	Low	0.01190695	ok	0.01192780	ok	0.01482535	ok		
4096	38.9	High	0.50635493	ok	0.50923550	ok	0.60805768	ok		
4090	30.9	Low	0.01185883	ok	0.01187810	ok	0.01421088	ok		
8150	20.9	High	0.50226778	ok	0.50251979	ok	0.55996168	ok		
0130	20.9	Low	0.01195110	ok	0.01193995	ok	0.01334837	ok		
10000	18.1	High	0.50956172	ok	0.50956911	ok	0.54993469	ok		
10000	10.1	Low	0.01228058	ok	0.01225534	ok	0.01327362	ok		
10001	66.8	High	0.46694571	ok	0.46542269	ok	0.62456226	ok		
10001	00.0	Low	0.01125478	ok	0.01119648	ok	0.01501585	ok		
32788	26.4	High	0.46799800	ok	0.46429935	ok	0.61729324	ok		
32700	20.4	Low	0.01465788	ok	0.01454080	ok	0.01934592	ok		
65500	19.9	High	0.47457179	ok	0.47172850	ok	0.61905313	ok		
03300	19.9	Low	0.02276078	ok	0.02264688	ok	0.02978644	ok		
83000	18.9	High	0.48412609	ok	0.48198944	ok	0.61485237	ok		
03000	10.9	Low	0.02812063	ok	0.02799621	ok	0.03581754	ok		
131000	18.1	High	0.49659592	ok	0.49499565	ok	0.50348705	ok		
101000	10.1	Low	0.04337242	ok	0.04321571	ok	0.04407448	ok		
199980	21.2	High	0.46065539	ok	0.45603758	ok	0.33666670	ok		
100000	21.2	Low	0.06039275	ok	0.05977920	ok	0.04398808	ok		
			Bottom Co	ils						
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se		
1024	152.0	High	0.51782316	ok	0.52314311	ok	0.63680214	ok		
1024	132.0	Low	0.01204390	ok	0.01211939	ok	0.01482124	ok		
4096	38.9	High	0.51340914	ok	0.51845336	ok	0.60914576	ok		
4090	30.9	Low	0.01201474	ok	0.01208375	ok	0.01418279	ok		

0.50427157

0.01203314

0.51184195

0.01237202

0.47176218

ok

ok

High

Low

High

Low

High

20.9

18.1

0.51140696

0.01214556

0.51830840

0.01246099

0.47527575

ok

ok

ok

ok

0.55657101

0.01329661

0.54658341

0.01322970

0.61986452

ok

ok

ok

ok

ok

8150

10000

07/11/2024, 1

12:19		21901171837.html						
		Low	0.01139183	ok	0.01143128	ok	0.01494670	ok
32788	26.4	High	0.47098473	ok	0.47382241	ok	0.61339164	ok
32700	20.4	Low	0.01482582	ok	0.01489161	ok	0.01930472	ok
65500	19.9	High	0.47744361	ok	0.48107740	ok	0.61965704	ok
00000	10.0	Low	0.02314802	ok	0.02324636	ok	0.02996386	ok
83000	18.9	High	0.48651412	ok	0.49144405	ok	0.61599159	ok
00000	10.5	Low	0.02855803	ok	0.02875579	ok	0.03607529	ok
131000	18.1	High	0.49636531	ok	0.50267959	ok	0.49449542	ok
101000	10.1	Low	0.04382953	ok	0.04425656	ok	0.04353392	ok
199980	21.2	High	0.45510581	ok	0.45483771	ok	0.32019871	ok
100000	21.2	Low	0.06033105	ok	0.06008309	ok	0.04201234	ok
			Alignment M	latrix				
Po	sition	Coil	X respons	е	Y respons	е	Z respons	e
		Χ	0.9999674	6	-0.0027241	10	-0.0052814	15
•	Тор	Y	0.0019744	8	0.9999675	8	-0.0023053	30
		Z	0.0051689	1	0.0117806	7	0.9999456	4
		X	0.9999326	5	-0.0063605	53	-0.0000221	12
Во	ottom	Y	0.0106153	8	0.9999300	8	-0.0008735	54
		Z	-0.0054526	37	0.0027300	6	0.9999977	4
		В	/T Antenna B	alanc	e			
Frequency	Current(mA)	Gain	H ratio		V ratio		90 ratio	
1024	152.0	High	1.0108605	ok	1.0169526	ok	0.9959019	ok
1024	152.0	Low	1.0115017	ok	1.0160625	ok	0.9997228	ok
4096	38.9	High	1.0139314	ok	1.0181014	ok	1.0017894	ok
4090	30.9	Low	1.0131472	ok	1.0173134	ok	0.9980233	ok
8150	20.9	High	1.0039895	ok	1.0176852	ok	0.9939448	ok

1.0068646

1.0044749

1.0074459

1.0103148

1.0121770

1.0063819

1.0114573

1.0060514

1.0170135

1.0049327

1.0155544

0.9995356

1.0105392

0.9879529

0.9989784

ok

1.0172203

1.0171504

1.0167804

1.0211701

1.0209709

1.0205106

1.0241259

1.0198184

1.0264708

1.0196158

1.0271315

1.0155232

1.0240850

0.9973689

1.0050835

ok

0.9961224

0.9939060

0.9966912

0.9924783

0.9953949

0.9936795

0.9978704

1.0009755

1.0059564

1.0018528

1.0071962

0.9821413

0.9877353

0.9510852

0.9550847

ok

8150

10000

10001

32788

65500

83000

131000

199980

20.9

18.1

66.8

26.4

19.9

18.9

18.1

21.2

Low

High

Low

09/10/2024, 15:14 21901203381.html

Calibration Certificate

RDG SUPPLY SDN BHD

No.13-2, Kuchai Entrepreneur Park, Jalan Kuchai Maju 2

58200 Kuala Lumpur, MALAYSIA

Tel: +60 3 7980 7788

e-mail: ricky.douglas@rdg.com.my

http: www.rdg.com.my

Manufacturer: Vivax-Metrotech Model: vLoc3-Pro

Serial No.: 21901203381 **Asset No.:**

Work Order: RDG_240059-JL GLOBAL INV Report No.:

Customer: JL GLOBAL INVISION SB.

We certify that the instrument meets or exceeds the manufacturer published electrical specifications at the points tested. All measurements are traceable to national or international standards or have been derived by approved ratio techniques. This certificate may not be reproduced other than in full.

Calibration Information

Calibration Date: 09-OCT-2024 15:08:05 Status: Passed

			Top Coil	s				
Frequency	Current(mA)	Gain	H respons	e	V respons	е	90 respons	se
1024	152.0	High	0.51325178	ok	0.51852316	ok	0.63003552	ok
1024	152.0	Low	0.01189258	ok	0.01205923	ok	0.01464180	ok
4096	38.9	High	0.50883585	ok	0.51251352	ok	0.60396820	ok
4090	30.9	Low	0.01186223	ok	0.01199138	ok	0.01413003	ok
8150	20.9	High	0.50243437	ok	0.50468105	ok	0.55895162	ok
0130	20.9	Low	0.01193410	ok	0.01202915	ok	0.01334944	ok
10000	18.1	High	0.51151747	ok	0.51339221	ok	0.55164224	ok
10000	10.1	Low	0.01230119	ok	0.01238699	ok	0.01334659	ok
10001	66.8	High	0.46843073	ok	0.47418314	ok	0.62012321	ok
10001	00.0	Low	0.01126898	ok	0.01144504	ok	0.01494532	ok
32788	26.4	High	0.46668679	ok	0.47278455	ok	0.61243874	ok
32700	20.4	Low	0.01470477	ok	0.01487210	ok	0.01941143	ok
65500	19.9	High	0.47181374	ok	0.47984082	ok	0.61154503	ok
03300	19.9	Low	0.02289465	ok	0.02315765	ok	0.02992628	ok
83000	18.9	High	0.48081291	ok	0.49026614	ok	0.60455877	ok
03000	10.9	Low	0.02826269	ok	0.02863493	ok	0.03588942	ok
131000	18.1	High	0.48828077	ok	0.49836776	ok	0.48939016	ok
131000	10.1	Low	0.04319591	ok	0.04376472	ok	0.04378210	ok
199980	21.2	High	0.44825426	ok	0.44418570	ok	0.32576934	ok
199900	21.2	Low	0.05955770	ok	0.05854240	ok	0.04353376	ok
			Bottom Co	oils				
Frequency	Current(mA)	Gain	H respons	е	V respons	е	90 respons	se
1024	152.0	High	0.51072830	ok	0.51514566	ok	0.62700617	ok
1024	132.0	Low	0.01190999	ok	0.01196194	ok	0.01457200	ok

Bottom Colls										
Frequency	Current(mA)	Gain	H response		V response		90 response			
1024	152.0	High	0.51072830	ok	0.51514566	ok	0.62700617	ok		
1024	152.0	Low	0.01190999	ok	0.01196194	ok	0.01457200	ok		
4096	38.9	High	0.50601643	ok	0.51017904	ok	0.59864336	ok		
4090	30.9	Low	0.01187110	ok	0.01191895	ok	0.01401960	ok		
8150	20.9	High	0.49976212	ok	0.50326300	ok	0.55288333	ok		
0150	20.9	Low	0.01194260	ok	0.01197695	ok	0.01320207	ok		
10000	18.1	High	0.50900805	ok	0.51234037	ok	0.54541779	ok		
10000	10.1	Low	0.01231256	ok	0.01234214	ok	0.01318994	ok		
10001	66.8	High	0.46653053	ok	0.46983767	ok	0.61407322	ok		

09/10/2024, 15:14 21901203381.html

15:14	21901203381.ntml							
		Low	0.01129195	ok	0.01132265	ok	0.01481515	ok
32788	26.4	High	0.46562383	ok	0.46903309	ok	0.60899156	ok
32700	20.4	Low	0.01471698	ok	0.01473205	ok	0.01917312	ok
65500	19.9	High	0.47144049	ok	0.47545448	ok	0.61263883	ok
03300	19.9	Low	0.02289533	ok	0.02290963	ok	0.02963726	ok
83000	18.9	High	0.48060068	ok	0.48498982	ok	0.60756963	ok
03000	10.9	Low	0.02825554	ok	0.02828084	ok	0.03558025	ok
131000	18.1	High	0.48918700	ok	0.49300191	ok	0.49008399	ok
131000	10.1	Low	0.04325241	ok	0.04321528	ok	0.04314665	ok
199980	21.2	High	0.45178303	ok	0.45135257	ok	0.32439268	ok
133300	21.2	Low	0.05997267	ok	0.05937720	ok	0.04254784	ok
			Alignment N	latrix				
Po	sition	Coil	X respons	е	Y respons	е	Z respons	е
		Х	0.9999529	1	-0.0033058	30	-0.0105778	31
	Тор	Y	0.0023166	8	0.9999902	2	-0.0005176	38
		Z	0.0037404	2	0.0043102	27	0.9999582	28
		X	0.9999641	2	-0.008730	11	-0.0034617	71
В	ottom	Υ	0.00586815		0.99994183		-0.0015556	33
		Z	-0.00439989		0.00452631		1.0000083	4
		В	/T Antenna B	aland	e			
Frequency	Current(mA)	Gain	H ratio		V ratio		90 ratio	
	450.0	High	0.9950833	ok	0.9934863	ok	0.9951918	ok
1024	152.0	Low	1.0014639	ok	0.9919323	ok	0.9952328	ok
4096	38.9	High	0.9944591	ok	0.9954450	ok	0.9911836	ok
4096	30.9	Low	1.0007478	ok	0.9939598	ok	0.9921847	ok
8150	20.9	High	0.9946814	ok	0.9971902	ok	0.9891434	ok
0130	20.9	Low	1.0007122	ok	0.9956605	ok	0.9889606	ok
10000	18.1	High	0.9950942	ok	0.9979512	ok	0.9887165	ok
10000	10.1	Low	1.0009243	ok	0.9963793	ok	0.9882629	ok
10001	66.8	High	0.9959435	ok	0.9908359	ok	0.9902439	ok
10001	00.0	Low	1.0020383	ok	0.9893063	ok	0.9912903	ok
32788	26.4	High	0.9977223	ok	0.9920652	ok	0.9943714	ok
02700	20.1	Low	1.0008303	ok	0.9905830	ok	0.9877232	ok
65500	19.9	High	0.9992089	ok	0.9908588	ok	1.0017886	ok
33000	13.0	Low	1.0000297	ok	0.9892899	ok	0.9903423	ok
83000	18.9	High	0.9995586	ok	0.9892378	ok	1.0049803	ok
22000	. 3.0	Low	0.9997470	ok	0.9876343	ok	0.9913855	ok
131000	18.1	High	1.0018560	ok	0.9892332	ok	1.0014177	ok
101000	13.1	Low	1.0013080	ok	0.9874456	ok	0.9854861	ok

Low

High

Low

21.2

1.0013080

1.0078723

1.0069675

ok

ok

ok

0.9874456

1.0161349

1.0142598

ok

ok

ok

0.9854861

0.9957741

0.9773527

ok

ok

ok

RADIODETECTION 39

Customer:

JL GLOBAL INVISION SERVICES

Address: No

No 69, Jalan Teratai 7, Taman Johor Jaya,

Johor Bahru, Johor, 81100 Malaysia

Certificate No. 250521-00128

Date: 21 May 2025

Summary Verification

Description	Conducted by	Result
Checked and calibrated in accordance to the standard set by the manufacturer	Farah Danieza	Pass
Checked and service locator for mechanical & component fault.	Farah Danieza	Pass
Checked and service transmitter (power gain/output and measurement, frequencies, connectors and accessories) are good working condition.	Farah Danieza	Pass
Equipment updated to the factory latest firmware release.	Farah Danieza	Pass

Note: Service by non-approved service centers or operators may void the manufacturer's warranty.

General

The Radiodetection locator and transmitter are robust, durable and weatherproof. However you can extend your equipment's life by the following these care and maintenance guidelines.

Storage

Store the equipment in a clean and dry environment. Ensure all terminals and connection sockets are clean, free of debris and corrosion and are undamaged. Do not use this equipment when damaged or faulty.

Batteries and power supply

Use good quality Alkaline or NiMH batteries only. When using an AC adapter, use only Radiodetection approved adapters. Only use Radiodetection approved Li-lon battery packs.

Cleaning

WARNING! Do not attempt to clean this equipment when it is powered or connected to any power source, including batteries, adapters and live cables.

Ensure the equipment is clean and dry whenever possible. Clean with a soft, moistened cloth. If using this equipment in foul water systems or other areas where biological hazards may be present, use an appropriate disinfectant. Do not use abrasive materials or chemicals as they may damage the casing, including the reflective labels. Do no use high pressure hose.

Service and Maintenance

All safety equipment, it is recommended (and may be required by law) that they are serviced at least once a year, either at Radiodetection or a Radiodetection approved repair center.

Authorised Service Centre

RD-PALMER TECHNOLOGY (M) SDN BHD

Co. Reg. 200301008331 (610731-W)

No. 63, Jalan Seri Utara 1, Sri Utara Kipark, 68100 Kuala Lumpur.

Tel: +603 6250 2071 • Fax: +603 6250 2072 • Email: info@rd-palmer.com.my

Certificate of Calibration

Product: RD8K1RX

Serial Number: 10/81PDL-3578

Order Number: -

Date of Issue: 21/05/2025

Calibration Due Date: 21/05/2026

Customer:

ecal@rd-palmer.my - RD-PALMER TECHNOLOGY SDN BHD,63, JLN SERI UTARA 1, ,SRI UTARA KIPARK,,KUALA LUMPUR,MALAYSIA,68100

Radiodetection Calibration Data:

Location of Calibration: Radiodetection Ltd, Western Drive, Bristol, BS14 0AF, United Kingdom

Environmental Temperature: N/A

Relative Humidity: N/A

Test Procedure: RD8K1 Full Test (TEST3) R2&3.xml

Revision: 7.5.0.1

Traceability Information: Reference Calibration

Technician ID: GlenN

Equipment used at reference Calibration:

Model Number	Model Description	Serial Number	Last Cal Date	Cal Due Date
33120A	Hewlett Packard Function Generator	US36038595	03/08/2017	03/08/2018
34401A	Agilent Digital Multimeter	MY47002133	04/05/2017	04/05/2018
QL355TP	Thurlby Thandar Power Supply	251105	04/05/2017	04/05/2018

Calibration Results:

Frequency	H Ratio High	H Ratio Low	V Ratio High	V Ratio Low	Measurement Uncertainty	High Limit	Low Limit	Pass/Fail
315.0	0.9653	0.9653	1.0008	1.0013	0.0005	1.200	0.800	PASS
645.0	0.9656	0.9655	1.0007	1.0011	0.0005	1.200	0.800	PASS
870.0	0.9658	0.9656	1.0009	1.0010	0.0005	1.200	0.800	PASS
1090.0	0.9661	0.9658	1.0007	1.0010	0.0005	1,200	0.800	PASS
1415.0	0.9666	0.9662	1.0008	1.0012	0.0005	1.200	0.800	PASS
4091.0	0.9717	0.9696	1.0006	1.0019	0.0005	1.200	0.800	PASS
8172.0	0.9768	0.9727	1.0002	1.0026	0.0005	1.200	0.800	PASS
9820.0	0.9772	0.9734	1.0001	1.0028	0.0005	1.200	0.800	PASS
22170.0	0.9827	0.9765	1.0005	1.0038	0.0005	1.200	0.800	PASS
32788.0	0.9881	0.9814	1.0016	1.0049	0.0005	1.200	0.800	PASS
65550.0	0.9927	0.9855	1.0027	1.0061	0.0005	1.200	0.800	PASS
83000.0	0.9959	0.9883	1.0031	1.0066	0.0005	1.200	0.800	PASS
131100.0	1.0102	1.0007	1.0021	1.0055	0.0005	1.200	0.800	PASS
199930.0	1.0324	1.0217	0.9939	0.9974	0.0005	1.200	0.800	PASS

^{1.} This certifies that the above product was tested and calibrated to the company's specifications and that the purpose built This certifies that the above product was tested and calibrated to the company's speciations and that the purpose doing equipment performing these functions has been calibrated by instruments whose calibration is traceable to national standards.
 The calibration was performed using procedures that are subject to periodic review.
 The Company's Quality Management System is in accordance with BS EN ISO 9001:2008 Cert Number FM12608.

Traceability Information: eCERT Calibration

Operator Name: Farah

Operator Function: Service Engineer

Operator ID: 2025

Calibration Validation Results:

Frequency	Factory Top	Factory Bottom	Measured Top	Measured Bottom	Pass/Fail
Horiz High	0.0264502	0.02682346	0.02650737	0.02690428	PASS
Horiz Low	0.0447036	0.04538431	0.044792	0.04545747	PASS
Vert High	0.02732814	0.02735917	0.02739624	0.02743042	PASS
Vert Low	0.04636349	0.04617669	0.04645739	0.04627059	PASS

This certificate has been produced using the eCertTM remote calibration program. eCert does not perform a complete functional check of the unit and cannot check the mechanical integrity of the unit under test, or the correct operation of the mechanical controls and LCD screen. Under the eCert program, Radiodetection cannot accept responsibility for validating these areas, and the operator should thoroughly check these areas for issues or damage before use. Users should also periodically check the time and date accuracy of their unit. The unit should be returned to a Radiodetection approved service centre in the case of any concern

RADIODETECTION 78

Customer: Address:

JL GLOBAL INVISION SERVICES

No 69, Jalan Teratai 7, Taman Johor Jaya,

Johor Bahru, Johor, 81100 Malaysia

Certificate No. 250521-00129

Date: 21 May 2025

Summary Verification

Description	Conducted by	Result
Checked and calibrated in accordance to the standard set by the manufacturer	Farah Danieza	Pass
Checked and service locator for mechanical & component fault.	Farah Danieza	Pass
Checked and service transmitter (power gain/output and measurement, frequencies, connectors and accessories) are good working condition.	Farah Danieza	Pass
Equipment updated to the factory latest firmware release.	Farah Danieza	Pass

Note: Service by non-approved service centers or operators may void the manufacturer's warranty.

The Radiodetection locator and transmitter are robust, durable and weatherproof. However you can extend your equipment's life by the following these care and maintenance guidelines.

Store the equipment in a clean and dry environment. Ensure all terminals and connection sockets are clean, free of debris and corrosion and are undamaged. Do not use this equipment when damaged or faulty.

Batteries and power supply

Use good quality Alkaline or NiMH batteries only. When using an AC adapter, use only Radiodetection approved adapters. Only use Radiodetection approved Li-lon battery packs.

WARNING! Do not attempt to clean this equipment when it is powered or connected to any power source, including batteries, adapters and live

Ensure the equipment is clean and dry whenever possible. Clean with a soft, moistened cloth. If using this equipment in foul water systems or other areas where biological hazards may be present, use an appropriate disinfectant. Do not use abrasive materials or chemicals as they may damage the casing, including the reflective labels. Do no use high pressure hose.

Service and Maintenance

All safety equipment, it is recommended (and may be required by law) that they are serviced at least once a year, either at Radiodetection or a Radiodetection approved repair center.

Authorised Service Centre

RD-PALMER TECHNOLOGY (M) SDN BHD

Co. Reg. 200301008331 (610731-W)

No. 63, Jalan Seri Utara 1, Sri Utara Kipark, 68100 Kuala Lumpur.

Tel: +603 6250 2071 • Fax: +603 6250 2072 • Email: info@rd-palmer.com.my

Certificate of Calibration

Product: RD8K1RX

Serial Number: 10/81PDL-3887

Order Number: -

Date of Issue: 21/05/2025

Calibration Due Date: 21/05/2026

Customer:

ecal@rd-palmer.my - RD-PALMER TECHNOLOGY SDN BHD,63, JLN SERI UTARA 1, ,SRI UTARA KIPARK,,KUALA LUMPUR,MALAYSIA,68100

Radiodetection Calibration Data:

Location of Calibration: Radiodetection Ltd, Western Drive, Bristol, BS14 0AF, United Kingdom

Environmental Temperature: N/A

Relative Humidity: N/A

Test Procedure: RD8K1 Full Test (TEST3) R2&3.xml

Revision: 7.5.0.1

Traceability Information: Reference Calibration

Technician ID: JoshM

Equipment used at reference Calibration:

Model Number	Model Description	Serial Number	Last Cal Date	Cal Due Date
33120A	Agilent Function Generator	MY44030486	12/04/2018	12/04/2019
34401A	Agilent Digital Multimeter	MY 45024994	05/04/2018	05/04/2019
QL355TP	Thurlby Thandar Power Supply	281719	28/06/2018	28/06/2019

Calibration Results:

Frequency	H Ratio High	H Ratio Low	V Ratio High	V Ratio Low	Measurement Uncertainty	High Limit	Low Limit	Pass/Fail
315.0	0.9904	0.9896	0.9932	0.9931	0.0005	1.200	0.800	PASS
645.0	0.9906	0.9917	0.9937	0.9932	0.0005	1.200	0.800	PASS
870.0	0.9907	0.9881	0.9937	0.9932	0.0005	1.200	0.800	PASS
1090.0	0.9908	0.9905	0.9941	0.9933	0.0005	1.200	0.800	PASS
1415.0	0.9910	0.9910	0.9945	0.9933	0.0005	1.200	0.800	PASS
4091.0	0.9926	0.9945	1.0002	0.9939	0.0005	1.200	0.800	PASS
8172.0	0.9934	0.9977	1.0073	0.9944	0.0005	1.200	0.800	PASS
9820.0	0.9937	0.9986	1.0090	0.9946	0.0005	1.200	0.800	PASS
22170.0	0.9956	1.0020	1.0133	0.9947	0.0005	1.200	0.800	PASS
32788.0	0.9996	1.0063	1.0195	1.0002	0.0005	1.200	0.800	PASS
65550.0	1.0032	1.0098	1.0192	0.9995	0.0005	1.200	0.800	PASS
83000.0	1.0044	1.0109	1.0194	0.9996	0.0005	1.200	0.800	PASS
131100.0	1.0075	1.0137	1.0258	1.0057	0.0005	1.200	0.800	PASS
199930.0	1.0061	1.0121	1.0382	1.0183	0.0005	1.200	0.800	PASS

- 1. This certifies that the above product was tested and calibrated to the company's specifications and that the purpose built equipment performing these functions has been calibrated by instruments whose calibration is traceable to national standards.

 2. The calibration was performed using procedures that are subject to periodic review.

 3. The Company's Quality Management System is in accordance with BS EN ISO 9001:2008 Cert Number FM12608.

Traceability Information: eCERT Calibration

Operator Name: Farah Operator Function: Engineer

Operator ID: 2025

Calibration Validation Results:

Frequency	Factory Top	Factory Bottom	Measured Top	Measured Bottom	Pass/Fail
Horiz High	0.02688881	0.02709131	0.02694944	0.02714531	PASS
Horiz Low	0.04539984	0.04552318	0.04548715	0.04557737	PASS
Vert High	0.02749104	0.0281345	0.02752655	0.02818072	PASS
Vert Low	0.04647082	0.0469362	0.04651655	0.04700923	PASS

This certificate has been produced using the eCert⁷⁸ remote calibration program. eCert does not perform a complete functional check of the unit and cannot check the mechanical integrity of the unit under test, or the correct operation of the mechanical controls and LCD screen. Under the eCert program, Radiodetection cannot accept responsibility for validating these areas, and the operator should thoroughly check these areas for issues or damage before use. Users should also periodically check the time and date accuracy of their unit. The unit should be returned to a Radiodetection approved service centre in the case of any concern.

OMU Calibration Certificate

This document is only valid if provided with a holographic Authentication Seal

System information

OMU serial number	84445402
ОМИ Туре	ABM-90
Calibration valid until	September 11 th , 2025

Calibration process information

Calibration date	September 11 th , 2024	Operator	Thivagar Sarawanan
Calibration robot type	DR-CR-01307	Manufacturer	Reduct NV
Valid temperature range	0°C to 50°C	Valid inclination (pitch) range	-60º to 60º
Static calibration positions	220	Dynamic calibrations	220

Calibration results

(See reverse for the process description) Sine Curve Test (SCT test) Primary nine inertial sensors Pre-calibration (See chart) Post-calibration (See chart) **Criterion SCT-test:** Post-calibration match **PASS** better than 0.4% of scale. **Measurement Verification Test (MVT test)** Number of runs: Forward · A to B Backward1 1 · B to A Plane Maximum Observed Result Allowed Spread TVT test A REDUCT Spread XY 0.25% 0.08% **PASS** 0.10% 0.05% PASS **Overall Calibration Result** PASS

Authentication Seal

Verified by,

Otto Ballintijn, Managing Director

Calibration Procedure

Objective

Reduct pipeline mapping probes are manufactured and assembled using state of the art machinery and the best materials and components. The primary nine inertial measurement sensors are assembled such that they are placed as accurately as possible on the X, Y or Z axis of the probe. However, all mechanical assembly is invariably imperfect, i.e. the angles between the nine key inertial sensors are not exactly 90 degrees. The objective, therefore, of the Reduct calibration procedure is to measure the angular errors and compensate them mathematically.

Method

Reduct has developed the DR-CR-01307, a proprietary calibration robot. Over a period of about two hours, the robot moves a probe through over 440 static positions and dynamic moves in an inclination range between -60° to $+60^{\circ}$ (red arrows) while rotating the unit 360° around its X-Axis (yellow arrow) and 360° around it Y-Axis (blue arrows).

Upon completion of the calibration procedure the data gathered by the probe during the calibration procedure is uploaded to the calibration software for further analysis.

Mathematical adjustment

A perfectly assembled system calibration data yields perfect sine curves. The data gathered from a probe is processed and an initial match to the perfect sine curve is made in the form of a scaling to the curve (BLUE columns in the table on the reverse side). Then, a series of proprietary algorithms will make mathematical adjustments to the assembly angle of each primary sensor until it finds the best fit to the perfect sine curve. The remaining scaling values for the primary inertial sensors must be below 0.4% for the probe to pass the SCT test. The resulting calibrated settings are then uploaded into the X-Traction software that matches the probe's serial number.

Measurement validation

As a final check the probe pre and post calibration performance is validated on a recent measurement. The owner will provide the raw data file (.mat) of a recent measurement that has height and azimuth variations, has at least 4 runs and preferably has a length of 100-300 meters.

OMU Calibration Certificate

This document is only valid if provided with a holographic Authentication Seal

System information

OMU serial number	84445667
OMU Type	ABM-90
Calibration valid until	September 21 st , 2024

Calibration process information

Calibration date	September 21st, 2023	Operator	Hans Van Niewenhuyze
Calibration robot type	DR-CR-002	Manufacturer	Reduct NV
Valid temperature range	0°C to 50°C	Valid inclination (pitch) range	-60° to 60°
Static calibration positions	220	Dynamic calibrations	220

Calibration results

(See reverse for the process description)

Sine Curve Test (SCT test) Primary nine inertial sensors Pre-calibration (See chart) Post-calibration (See chart) **Criterion SCT-test:** Post-calibration match **PASS** better than 0.4% of scale. TrackVerificationTest (TVT test) Number of runs: Forward • A to B 4 Backward • B to A Maximum Plane Observed Result Allowed Spread Spread TVT test XY 0.25% 0.14% PASS 0.10% 0.03% **PASS**

Overall Calibration Result

PASS

Verified by,

Otto Ballintijn, Managing Director

OMU Calibration Certificate

This document is only valid if provided with a holographic Authentication Seal

System information

OMU serial number	84445673
OMU Type	ABM-90
Calibration valid until	See X-Traction

Calibration process information

Calibration date	December 5th, 2023	Operator	Hans Van Niewenhuyze	
Calibration robot type	DR-CR-002	Manufacturer	Reduct NV	
Valid temperature range	0°C to 50°C	Valid inclination (pitch) range	-60° to 60°	
Static calibration positions	220	Dynamic calibrations	220	

Calibration results

(See reverse for the process description

		The second second	N. Sandan Street, or other Designation of the last of		
Sine Curve Test (SCT test)					
Primary nine inertial sensors					
Pre-calibration (See chart)					
Post-calibration (See chart)					
Criterion SCT-test:					
Post-calibration match PASS					
better than 0.4% of scale.					
	better than 0.4/6 bi scale.				
TrackVerificationTest (TVT test)					
Number of runs:					
• Forwa	ard 4	• A to B	4		
• Backv	vard 4	•B to A	4		
Plane	Maximum	Observed	Result		
1	Allowed	Spread			
	Spread	TVT test			
XY	0.25%	0.08%	PASS		
Z	0.10%	0.03%	PASS		
Overall Calibration Result					

Authentication Seal

Verified by,

Otto Ballintijn, Managing Director

RDG SUPPLY SDN BHD

CERTIFICATE OF CONFORMITY

This is to certify that

IDS Georadar Opera Duo 4 Wheeled S/N: 010-20-000445

under JL Global Invision Sdn Bhd

are designed and manufactured by IDS Georadar, Italy

For and Behalf of RDG SUPPLY SDN BHD

Date: 4th Nov 2020